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Removing the Effects of Random Guessing
From Latent Trait Ability Estimates

Abstract

In latent trait models the standard procedure for handling

the problem caused by guessing on multiple choice tests is to

estimate a parameter which is intended to measure the

guessingness" inherent in an item. Birnbaum's three parameter

model. which handles guessing in this manner, ignores individual

differences in guessing tendency. This paper presents a model

or procedure which uses the information contained in the inter-

action between a person and an item to remove the effects of

random guessing from estimates of ability, difficulty, and dis-

crimination. Simulated and real data are presented which support

the model in terms of fit and information.



Removing the Effects of Random Guessing

From Latent Trait Ability Estimates

Michael I. daller 1

The University of Chicago

1. Introduction

It is well known that individuals vary in their tendency

to guess randomly on multiple choice tests. With latent trait

models the staadard procedure for hand'.ing random guessing on

multiple choice tests is to estimate a parameter which is in-

tended to represent the "guessingness" inherent in an item

(see, e.g., Birnbaum, 1968). Such a three parameter or item-

guessing model ignores individual variation in guessing tendency.

Within classical test theory the "correction for guessing" (see,

e.g., jiamond and Evans,1973) also estimates guessingness, al-

though in this case the estimate is a function of the number of

wrong responses made by an individual.

We argue here, that with models designed to estimate ability,

there is no need to estimate random guessing behavior and correct

for it, whether such behavior is attached to the item or the person.

In either case our primary interest is in estimating ability. The

models a:e intended for that purpose, and our interest in guessing

arises only from an interest in eliminating the "noise" it creates

in ability estimation. Accordingly, consideration of the problem

in terms of eliminating the noise rather than estimating guessing

and correcting for it should be more fruitful, and this is the view

taken here. Since a large proportion of guesses occur when low

ability subjects meet items which are too difficalt for them,

I
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Panchapakesan (1969) has suggested omitting low ability subjects

entirely when estimating the item parameters. However, these

subjects can contribute relevant information concerning easy items.

The procedure presented here represents an improvemeut over her

idea in zwo important ways. First, the information contributed

by every subject is used during calibration of the instrument;

but is used at only those places where one may be reasonably sure it

is valid information. Second, the procedure yields a criterion

for measuring the adequacy of this method in acL ounting for random

guessing.

In the present paper we propose a latent t, it model or

procedure which uses the information contained to the interaction

between a person and an item to remove most of the effects of

random guessing from estimates of ability (end from estimates of

both item parameters, difficulty and discrimination). This is

accomplished through a modification of the free response model

removing those item-person interactions characterized by the item

being too difficult for the person and therefore likely to invite

guessing. The basic assumptions of latent trait models, unidi-

mensionality and local independence, are also made here.

The statistical procedures we derive for the model include:

1) estimation of the item parameters; 2) estimation of latent

ability and measurement error; 3) an item-by-item test of goodness

Jf fit of the model; and 4) an evaluation of the information re-

covered by a test. The model is equally applicable to the normal

or logistic response laws. Although the discussion in this paper

is in terms of binary scored items, the model is immediately
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generalizable to the nominal category scoring model (Bock, 1972),

as well as the graded response model (Samejima, 1972).

6
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2. The Data

Suppose that each of N subjects respond to n

multiple choice items, each item containing Aj

alternatives, ps1,...,n. The response of the ith subject

to the jth item may be thought of as right or wrong.

Omitted items are treated as wrong responses. While

this treatment of omits is considered a flaw in the

three parameter model (Lord,1968, p. 992), we feel

the present model which considers each item-person

interaction separately is better able to justify such

treatmeni. (see section 3).
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3. The Response Mode

Let e
i
be a value on the continuum of latent

ability underlying the respotIses to the test items,

and let the event that a subject of ability Oi

responds correctly to item j be denoted r
ij

$81.

Then the free response model et _Fe represented by

equation (1).

( 1) Fr (r=1 ei )
ij

0 F (Y
i j

Y
2/

where: F (Y
ij

) as/
1

e-t / 2 dt

or:

in which

F(Y
ij

)=exp(Y
ij

)/(14-exp(Yij))

jgmbj + a
J

.

Thu quantities bj and aj are the item parameters, difficulty

and discrimination respectively, associated with item J.

To obtain estimates of ability removing random guess-

ing, or A.R.R.G. estimates, the required adjustment to

tne free response model is represented by equation 2.

(2) Pii

)

F(a
j

, b
ii

:(s

i
) ; F > p

c

gij F < Pc
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where gij= Pr (Person I guesses item j correctly

given F
c
),and where P

c
is some small probability.

What use might be made of the set of items where F

P
c

is considered elsewhere (Waller, 1974). For our

purpose consider what effect this procedure has on

estimation of the principal parameters of the model,

b aj and 6i.

The basic idea is to base the estimate of any

person's ability on only those items for which

there is a reasonable chance that the person achieved

the correct response through the interaction of his

ability and the item characteristics. That is, an item

which is very difficult for a particular person is an

item which invites guessing and therefore is eliminated

from consiueration in estimating the person's ability

(also that person's response is removed from the sample

used to calibrate such a- item). Whether or not the

person guesses on such 4n item has no substantial effect

on the estimate of his ability, because these item-person

interactions are removed from the estimation procedure.

More specifically, we obtain a preliminary estimate

a subject's ability from the approximate transforma-

tion of his per cent correct, inverse normal or logistic.

This gives us a rough idea of where the subject belongs



on the ability continuum. In each iteration of the

estimation procedure the probability of a correct

response, F, is estimated for each subject's response

to each item. The A.R.R.G. procedure simply omits

from estimation any interaction for which this estimated

probability is less than some small probability, the

cutoff point, An An adequate method for determining the

appropriate value of Pc is readily available when

testing the fit of the model.

The method presented here treats omits the same

as wrong responses. In support of this treatment it may

be argued that there exists a probability, Pc, which

can be used to divide all responses into two approxirate

groups, those responses which are made solely on the basis

of the subjects' ability, and those responses which for some

examinees represent random guessing and therefore as a group

contribute more noise than information in an estimation

procedure. The first group consists of responses which

occur when-the probability of a correct response, P
ij

9 is

above the point Pc. it is assumed that subjects in this

group either know the correct answer or do not, and if not,

either omit the question or respond incorrectly due
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to misinformation. Support for such a model of behavior

comes from a recent study by Bock (1972) which shows that

the selection of certain wrong alternatives is representative

of positive ability. The subject knows enough to choose

what he believes to be the correct alternative, but not

enough to make the finer discrimination which would enable him

to choose what is in fact the correct alternative. If he

does not omit the item, his partial knowledge misinforms him

and leads him to select an incorrect alternative.

The second group consists of responses in which P
ij

is less than andand across a sample of examinees two behaviors

are assumed to occur. Non-guessers (or low risk takers) continue

to behave as all subjects behave above Pc, they either know

the correct answer or do not, and if not, either omit or

respond incorrectly. Guessers (or high risk takers) either

know the answer or do not; but if not, these subjects will tend

to guess, in which case, they will be correct 100/A
J
% of the

time, where Aj is the number of alternatives. It is assumed

that the procedure is robust with respect to minor differences

in the point at which individuals may begin to guess randomly.
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4. kstimation

There are a number of methods for obtaining estimates

of the parameters of latent trait models (see e.g. Birnbaum,

1968, Bock,1472, Bock and Lieberman, 1970, Lord, 1968). The

method described in the present study may be termed cond-

itional estimation (Asock,1972). This method as applied to

the three parameter item-guessing model is described in

Kolakowski and Bock (1970). As the A.R.R.G. procedure

for removing the effects of random guessing from latent

trait parameter estimates is a modification of the free

response model, we first review the estimation procedure

for the free response model from which estimation removing

random guessing is easily seen2 . The estimation procedure

is outlined in terms of a general response relation

P
ij

= F(Y
ij

)

where F may be any monotonic function which maps the real

line into the unit interval, e.g. the normal ogive or logistic

ogive.

2 Also, when the item-guessing parameter, gj, in the three

parameter item-guessing model, Pij = gj (l-gj) Fij, is

treated as a constant during maximum likelihood estimation,

the procedure described here is immediately generalized to

the item-guessing model.
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Maximum likelihood estimation of ability

Suppose we have estimates of the item parameters,

discrimination and difficulty,of n dichotomous items.

These estimates might be values based on a previous calibration

of the testing instrument or estimates from the previous

cycle during calibration of the instrument. For the i th

person's encounter with the j th
item,

let r
ij

= 1

and r
ij

= 0

Further, let r

denote a correct response,

denote an incorrect response.

= (r
rig.

. r
in

denote the

response vector of person i. Thus, under the assumption

of local independence--that responses of subjects with

the same ability to different items are statistically

independent--equation (3),

( 3 ) Li
n r

ij
(1-r

ij
)

= Pr(ri)
s'c n Pij Qij

J.'

is the joint probability function of the response vector

for person i. To bbtoin the maximum likelihood (m.1.)

estimate of 9
i
we obtain the first and second partial de-

rivatives of the log of equation (3). These equations

(omitting the subscripts) are:

(4) at . z 11=E] and
e ae j=1 P Q 38



(5)
2t

36'
jr -F a

2
P (3P2

2 PQee
38 14 ae

A PR + (r-F) (Q-P)

F
2
Q
2

Considering equation (4), Ze we see that the

equation ke .= 0 is not easily solved for an explicit

statement of O. However, the solution is available by

means of an iterative process. For example, Newton-Rapheson

iteration allows us to obtain a maximum likelihood estimate

of 01. For one variable the estimate of this parameter at

k+1the (k+1) st
iteration, e

'
is given by equation (6).

(6)
k+1 "k

6 a -k /k
0 68

with the two partials being evaluated at the previous

estimate of k
This procedure is repeated until the

correction, z.4/zee = ae is less than some previously

specified criterion, say .001.

Conditional estimation of item
parameters by maximum likelihood

Conditional estimation of the item parameters, that

is, the calibration of the instrument, also uses previously

obtained estimates of the parameters not in question, in

this case abilities. However, the time required to estimate
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the item parameters can be greatly reduced if the data

are reassembled in a binomial form, and the principle

of local independence relaxed somewhat. It is found

to be expedient to assume that "subjects whose latent

ability is in the 'neighborhood' of 0 re-

spond independently to different items. The purpose of

this relaxation is to justify grouping subjects for

whom provisional estimates of latent scores are similar.

It is assumed that the actual latent scores of subjects

in such groups are confined to a sufficiently small

neighborhood to assure independent responses. The question

of how small this neighborhood should be to justify the

local independence assumption is left to further empirical

study" (Sock, 1972, p. 37).

Under the relaxed assumption of local independence,

we can order the subjects by ability and divide them into

q fractiles. The number of subjects per fractile, N1,

may be assumed to follow a specific distribution, for

example N(0,1), or the so called "empirical" assumption

can be made that there are an equal number of subjects

in each fractile (Kolakowski and Bock, 1970, p. 5). In

either case let s
ij

= the number of subjects in tha th

fractile who got item j correct, and let s' = Is

S
qi

j so that s' represents the vector of the

item responses across the q fractiles. Then under the relaxed
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assumption of local independence, equation (7)

N !

(7) LJ
(N

i
s
ij

)

4 m Pr (8 ) n P
ii =i sijI j(N

i
9
ij

)!
Q
ij

is the joint probability function of the respoAse vector

for item j. As above, Pij is the response relation and

is a function of the item parameters and the associated

with the i th
fractile3 . The value to be used for 0

i
in

the estimation of the item parameters depends un the assumed

distribution of abilities: If a normal distribution is

assumed for the normal deviate corresponding to the

centroid of each fractile is used; if an empirical assump-

tion is made, the value of d used is the median value in

the fractile (Kolakowski and Bock, 1970, p.5).

As in the case of ability estimates, we will use as

our estimates of item parameters, aj and bj, those values

3
The are standardized to a mean of zero and variance

of one.
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which maximize . log . In order to obtain joint

estimates of these parameters, we obtain all first and

second partial derivatives of 2. with respect to the

item parameters. These equations (omitting the sub-

scripts) are:

(8)
q

P-P 3P3Z
y N4(

,
I

3b
as

b
PQ

where p s
ij

/N
ij

(9)

(10)
`bb

Z

a

= j 2z

3b
2

q
N (
i PQ

211 )

N (ka-13-
i PQ

3P
3a

1PQ + (g - p)

F
2
Q
2

9

3
2P

--T-
b`

(Q

(11) a
2P

N 1(2-71)4ba b3 1 PQ a ha a

(yIT

P
2
Q
2
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2 2
P(12) z

aa
.EN i(2:1) 3

,
11(19a 2

a a
2

2

(

F ) ) -
P Q

Again we find that the equations of the first

partials,
£b - 0 and La = 0 are not easily solved in

closed form and we again rely on a Newton-Rapheson

procedure. This is accomplished for the case of two

variables by writing out the first two terms of the

Taylor expansion of these two equations as in equations

(13) and solving the resulting system of linear

equations in the corrections, Abj and Aaj. These

corrections are added to the k th
stage estimates,

b, and a k
, to form the (k+1) st

stage estimates.

(Hildebrand, 1956, pp. 443-51.) Omitting the j

subscripts we have

(13)

= 4b (a k,
b
k
)

Zbb
(ak,

b

k
)

Abe (ak

(a
kO = 4

a
+

ab
(a

k
, b

k
) Ab +

as
(a , b

k
) Aa
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where: .gib = b + 6b and Aa = a + 6a

As with ability estimates, this process is repeated

until the corrections, Ab and Aa, are both less than

some criterion. These equations can be restated more

compactly in matrix terms,
4

(14)

a

or = ki .

Op

ba

2ba

z

as

/lb

Da

Equation (14) yields the following corrections:

Lb (-l'aatb + baZa)/ 6

= -bab b4a)/

which are added to the k th iteration estimates.

Here,
6 Det (H)

jaaillab ab
2

The Mathematics of the A.R.R.G.
Lstimation Procedure

With the estimation procedure of the free response

model firmly in hand, the adjustment implied for estimation

4
k
ab

= k
ba
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of abilities with the A.R.R.G. procedure is simple

and straightforward. To understand the implications

of equation (2) in terms of its effect on the m.l.

estimation procedure outlined above we need only con-

sider the first and second partial derivatives of P
ij

with respect to U. Observe, the A.R.R.G. model implies

the following:

(15)

DF(Yii) j) Pc

P = 3 0
i

(.) 3 (..)i

0 F(Y ij ) 4 P
c

3
2
F(Y

1

) >

1

F(Yij ) P
c

2 2
d P aei

Puu
30 ia

---11
2

0 F(Y
if

) < P
c

As expected, one or the other of these derive-

Lives are multipliers in the expressions for to and

k
Lou

give:. in equations (4) and (5), ci)abequently,

the response to any item for which F(Yij) is less
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than P
c
will not affect the estimation of the ability

being considered.

The A.R.R.G. Procedure:
Estimation of Item Parameters

As in the case of ability estimates, the modi-

fication of the procedure used to obtain estimates of

the difficulty and discrimination, b and a , under

the free response model is most readily seen by con-

sidering the first and second partials of P
ij

with

respect to these parameters. The form of these

equations is identical to that given with respect

to ability in equation (15). In effect we are again

assuming that those item-subject interactions which

produce provisional estimates of Pij which are deemed

unreasonable will not produce relevant information

for estimation of the item parameters; and consequently,

the derivatives associated with such interaction are zero.

Aeasurement Error

The estimate of the asymptotic variance of the

m.l. estimator, v, is obtained from Fisher's infor-

mation function which can be stated:
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lol
j

302

where F. indicates expectation.

It can be shown that asymptotically, 0 has a

normal distribution with mean 0 and variance 1/I(0); i.e.,

N (0, 1/I(e) ) .

Clearly, the larger the value of I(0), the informa-

tion, the more precise will be our estimate of ability.

We will use the information contained in the ability

estimates resulting from different models to make com-

parisons of the models.

While we estimate the precision of every ability

estimate, for purposes of general comparison we woula

like to obtain a statement of the information contained

in any Lest concerning a general level of ability. In

other words, subjects of identical ability should respond

stochastically the same to a given item. At expectation

the differences between people vanish and we are able to

obtain a statement for the information contained in a

test at a general ability level by observing that at

expectation equation (5), the second partial of k with res-
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pect to u, is simplified in that terms which con-

tain r-P vanish (see e.g. Birnbaum, 1968). There-

fore the statement of the information contained in

a test at a general level of ability is:

ou j PQ

2

n (Ai)
E

As has been shown, for each individual item, a test

of deviation from the model can be obtained since Q
J1

equation (16),is distributed as a Pearsonian x 2
on

q - 2 degrees of freedom (Bock and Jones, 1968, pp. 51-

60). Finally a test of fit for the test as whole. XTest

obtained by summing over items the residual sums of

squares, Qj, and comparing that sum to a x
2

on f

n
(q-2)-2 n(q - 2) -2 degrees of freedom.

i"1

q
(16) Q

i-1

N (p
it

- P )2

P
ij

Q
ij

n
(17) X

2
(1) Q

Test j=1
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The test of fit enables us to identify the best

cutoff point to use in applying this procedure. If

we ignore random guessing responses when they are in

fact present in the data, i.e., fit a free response.

model to data contaminated by random guessing, we

would expect the tesulting fit to be poorer than the

fit resulting from a model which adequately accounts

for random guessing responses. Within the present

context if we allow all the responses to remain in

the estimation procedure the fit will be poorer than

if we omit those responses which may result from

random guessing: Too many people at lower ability

levels will get the more difficult items correct.

On the other hand, if we remove too many responses

from the estimation procedure, two few subjects will

appear to be getting the mote difficult items correct

and we again will observe a poorer fit. Consequently

by beginning with a cutoff point of Pc sx 0 (i.e., a free

response analysis) and increase the cutoff point we

should observe an improved fit up to a point followed

by a poorer fit. The cutoff point which produces the

best fit is the proper value for Pc.

Th. effect on the recovered item parameters of

such a procedure is straightforward. Underestimating the
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cutoff, retaining responses at a level where some

responses are random guesses,results in underestimat-

ing the difficulty and discriminating power of the

effected items. Overestimating the cutoff point

results in an overestimation of the effected item's dif-

ficulty and discrimination. 5

Note that fit occurs with respect to items.

Given a set of items already calibrated, the effect

on ability estimation of removing more items than

necessary to remove the effects of random guessing

is simply less information and consequently less precise

ability estimates.

5
In this formu'ation, large negative values of the difficulty

parameter correspond to difficult items; consequently, over (under)-
estimation as used here refers to the absolute value of the
difficulty parameter.
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5.1 Simulated Data

In this section we examine a number of analyses

of two kinds of simulated data: Data sets simulating

free response behavior or Non- guessing data sets; and

data sets simulating random guessing of the kind modeled

by equation (2), i.e., Guessing data sets. A non- guesser's

response vector is generated by assuming values for his

abilit parameter and for all item parameters, calculating

the true probability of a correct response for each item-

person interaction, and then comparing this probability

to a random number between zero and one. A guesser's

response vector is generated in the same manner with the

exception that for those item-person interactions in which

this calculated probability is less than the cutoff point,

e.g., Pc = .05, each subject is assumed to guess in an

essentially random manner. The same random sequence and

the same set of abilities are used for both guessers and

non-guessers, so that the response vectors of guessers

11.1 non-guessers differ only on the subset of items where

the calculated probability of a correct response is less

than the cutoff point. With 5 as the number of alternatives,

a guesser will receive a correct response in a random

manner in 20 of this subset of items, whereas a non-guesser

will receive a correct response on less than Pc% of such items.



-24-

A Non-guessing data set is composed entirely of non-

guessing subjects; whereas a Guessing data set contains

approximately twenty-five per cent guessing subjects.

Two pairs of data sets, each composed of one Non-

guessing and one Guessing data set.were generated. Both

sets in a pair utilized the same assumed item parameters.

The first pair used a more or less idealized set of item

parameters with difficulties from -2.2 to 2.2 in zteps

of .1 and constant discriminations. The second pair used

item parameters obtained from a previously calibrated in-

Ftrowent with a similar range of difficulties, but with

widely varying discriminations.

We present only the characteristicr of analyses of the

twu sets of simulated data with constant discriminations,

a set of frcc response or Nen-guessing data and a set of

Guessing data with a true P
c
equal to .05.

6
When

variation in discriinating power is introduced into

data contaminated by guessing the results presented

below resulting from the constant discrimination data

are replicated with one exception. Varying discriminons

introduce a component of variance into the procedure which

6
All analyses we--e performed assuming a normal distribution

of abilities, and the Normal Ogive Response Relation.
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is not completely accounted for by the estimated

measurement error. Out of 480 subjects we would expect

95% confidence limits to cover all but 24 of the true

abilities. Forty-five abilities were in fact missed

by their estimated confidence limits calculated from

P
c
= .05 analysis of the varying discrimination data set.

Sets of Guessing data were also generated simulat-

ing individual cutoff points of .10 and .20 with no

significant changes in the results described in this

paper; particularly, the best fit always occurred with

P
c

= .05. Since the test of fit is made with respect

to the item parameters, increasing the point at which guessing

begins for any individual does not produce much of an effect

on this aspect of the estimation procedure: when the

subjects are grouped for item parameter estimation, Lhe

proportion of correct guesses in most fractiles remains the

same. Observe that the proportion of correct guesses is

the product of the proportion of guessers and the probability

of a correct response; i.e., with 252 of the sample simulating

guessers and a 5 choice test the proportion of correct gussses

on any item which admits guessing is .05.
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Consequently, increasing the proportion of guessers in

the sample will result in an increase in the proportion

of correct guesses on each item in every fractile

affected by guessing; consequently such an increase

should affect the estimation procedure. To demonstrate

the behavior of the model in this respect, sets of

Guessing data were analyzed lu which the proportion of

guessers was set at 50% and in this case the best

analysis occurred with Pc at the implied level of

correct guesses, .50 x 1/5 or .10. The implications

of this for analyses of real data is that identifica-

tion of the best cutoff point reflects the proportion

of guessers in the sample and not the probability at

which any individual begins to guess.

Table 1 gives the values of statistics for the

sample of abilities used to generate both sets of data,

and the values of these parameters as calculated from

the recovered sets of abilities from the analyses

of the Non-guessing data with constant discriminations

utilizing different cutoff points. Table 2 presents the

same values for analyses of the Guessing data. Figures

(1 to 3) contain plots of the 45 pairs of recovered item

parameters from the three analyses of thr! simulated

Guessing data (A= Discriminations, B = Difficulty).
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TABLE 1
MOMENTS OF THE TRUE AND RECOVERED SAMPLES OF ABILITIES

NON-GUESSING DATA (CONSTANT DISCRIMINATIONS)

478 True P a .00

Free
Response

P a .05

Mean -0.008 -0.003 0.012
(S.E.) (0.046
Variance 0.964 1.007 0.979
(95% C.L.) (0.89, 1.15) (0.87,
Skewness -0.201 -0.090 -0.146
(S.E.) (0.112)
Kurtosis -0.380 -0.292 -0.373
(S.E.) (0.223)

Range Statistics

Minimum
Ability -2.66 -2.71 -2.63

Maximum
Ability +2.63 +2.70 +2.49

Range 5.29 5.41 5.12

AT on 358 d.f. 258.48 311.46

TABLE 2

1.12)

N a 478

MOMENTS OF THE TRUE AND RECOVERED SAMPLES OF ABILITIES
GUESSING DATA (CONSTANT DISCRIMINATIONS)

Analysis
True P

c
a .00 P

c
a 0.05 P

c
a 0.10

Mean -.008 +0.020 +0.010 +.026
(S.E.) (0.046)
Variance .964 1.089 0.975 0.971
(95% C.L.) (0.96, 1.24 (0.86, 1.12) (0.75, 1.11)
Skewness -.201 +0.334 -0.083 -0.193
(S.E.) (0.112)
Kurtosis -.380 +0.431'1 -u.315 -0.327
(S.E.) (0.223)

Range Statistics

Minimum
Ability -2.66 -2.77 -2.60 -2.97

Maximum
Ability +2.63 +3.90 +2.68 +2.37

Range 5.29 6.67 5.28 5.34
2

onxTest 358 d.f. 371.25 271.01 399.89

a
p .053

b
p .004
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In both tables we see that the best fit, indicated by

the smallest x2, occurs at that cutoff point which correctly

indicates the percent of random guessers in the sample of

simulated examinees. (Consequently with the A.R.R.G. procedure

one is able to identify data which is completely free from

random guessing as in Table 1 in which case one proceeds with

a free response analysis.) The plots of the estimated item

parameters (Figures 1-3) from the three analyses of the

Guessing data confirm the effect stated in section 4 that

aver (under).-estimation of the appropriate cutoff point over

(under)-estimates (the absolute value of) the item parameters

of those items affected by guessing; i.e., the difficult items.
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5.2 Uata In Situ

The first two of the three instruments analyzed

in this paper may be considered subtests of the Survey

Test of Educational Achievement (STEA), items for which

were selected from the Sequential Tests of Educational

erogress (STEP) (Cooperative Testing Service, 1969).

These subtests, a reading achievement measure and a

mathematics achievement measure, were each formed for

tais study by combining two of the five subject matter

areas which comprise the STEA. The reading subtest is

composed of the 25 items which make up the Reading and

Mechanics of writing subject matter areas, and the MATH

subtest is composed of the twenty-two items which make

up tue Mathematics computation and Mathematics basic

concepts subject matter areas. For the purpose of this

study each subtest is considered a separate test admin-

istered to a different group of examinees. The fifth

grade math subtest and the tenth grade reading subtest

were analyzed.

The SIEA was given to a very large number of fifth

grade and tenth grade students, total N = 39,000, through-

out the southern United States. From each population a

random sample of size 4000 was Pelected for analysis

relating to the project for which the STEA was develaped.

From each of these samples a further random selection was
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made to reduce the size of each sample for this study

to approximately 500.7

The third instrument is the 30 item Word Knowledge

subtest of Metropolitan Achievement Tczt. The sample

used in this study is a random sample of size 500 taken

from the 17,000 fourth graders who participated in the

Compensatory Reading Study. 8

For each test values of P
c

from .00 (free response)

to .20 in steps of .05 were utilized to obtain the best

fitting cutoff point, and for each test the best fit

occurred with P
c

- .10.

The three instruments were analyzed by three models:

A free response analysis, an A.R.R.G. analysis, Pc = .10,

and an item-guessing analysis. In a sense the inclusion of

the free response analysis in this section is superfluous:

The fit from the A.R.R.G. procedure when applied to free

response data will indicate that the data is free from guess-

ing and that all responses should be used in estimation.

Therefore, the free response analysis is, when warranted, in-

7
The computer program used in performing the latent

trait analyses is a modified version of NORMOJ, Normal
Ogive Item Analyser, written for the IBM 360/65 at the
University of Chicago Computation Center (Kolakoveki and
Bock, 1970), and modified by the author.

These data are a part of the Compensatory Reading Project
Contract No 08C-71-3715. Any conclusions are those of the
author and are not necessarily endorsed by the U.S. Office
of Education.
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cluded in the A.R.R.G. procedure.

Table 3 contains the fits produced by the different

analyses. In every set of data the improvement

in the fit of the model which accrues from the use of the

A.R.R.G. procedure is significant. The implications of

this for latent trait item analysis are far reaching.

TABLE 3

x
2 GOODNESS OF FIT

Test
No. of
Items

DF
Free
Response

DF A.R.R.G. DF
Item-
Guessing

Word Knowledge 50 398

Reading

Mathematics

25 198

22 174

995.0c

297.0a

259.3
b

398 700.5
b

353 975.1c

198 229.7 173 261.4a

174 217.5a 152 266.2
b

a
p <.Ul.

p s.nol

P 4 <.001

The attraction of latent trait models results from their

ability to admit measurement on a scale with a well-defined

metric which in turn results from the probabilistic assumption

concerning the form of the response relation. Under either

the free response or item-guessing models, analyses of the
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Reading and Mathematics tests result in rejection of

this assumption for each instrument as a whole. In

this circumstance one recommended procedure for the

item analyst is to investigate the individual items

in an attempt to determine which items are failing to

fit the model. It is suggested that such items be

either removed from the instrument or returned to the

item constructor for rewording (Lord and Novick, 1968).

With each of these measuring instruments, however, the

A.R.R.G. analysis reveals that either option may be con-

traindicated; the error in the item-analysis procedure

lies not with the items, but with the failure of either

model to adequately remove the effects of random guessing

from the analysis. For a test in which significant lack

of fit is found during item analysis, the A.R.R.G. pro-

cedure results in fewer items being examined and/or eliminated.
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Parenthetically we note that the item-guessing

analysis fails to converge on some response vectors corres-

ponding to very low ability levels. In the two STEA sub-

tests, twenty subjects in reading and twenty-one subjects in

math were inestimable with this analysis, while twelve

subjects were lost in the analysis of the word knowledge

instrument. This is an example of the result presented by

Samejima (1973), indicating that under the item-guessing

model, maximum likelihood estimates corresponding to certain

response vectors may not be unique or may not even exist at

finite values.

In this regard, in the analyses of all three instruments

A.R.R.G. failed to produce an ability estimate for only one

subject. This subject received credit for only two items out

of the twenty-two math items, and attempted every, one of

these items. 9
Since two out of twenty-two do not quite differ

significantly from the chance percentage of 25 per cent 10

(p .0606), we suggest that this subject guessed at most of

these items and that measurement of him by this instrument is

inappropriate.

9
With respect to guessing STEA examinees are instructed as

follows: "If a question seems to be too difficult, make the
Most careful guess you can" and "Wrong answers will not be
counted against you."

10
STEA items have four alternatives.
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6. The Information Structure

Appropriate comparisons of the information structure

as estimated by the different analyses of the Guessing data

provide an insightful basis for evaluation of the different

models. Consider the loss at precision or information that

one might expect to result from random guessidg. If we keep

item parameters and subject parameters constant, the effect

on information of random guessing should be to lower the amount

of information concerning estimation of alit those abilities

in the lower portion of the ability continuum. Generally

speaking, only lower ability people have the opportunity to

do much random guessing; clearly the farther up the ability

continuum, the less the opportunity to guess. The information

structure recovered from an analysis should reflect this

situation. We will proceed to examine the information re-

covered by three analyses of simulated item responses con-

taminated by guessing: the free response analysis (F),the

A.R.R.G. analysis (A) and the item-guessing analysis (I).
11

We will use as a standard the information provided by

the free response analysis of the Non-tuessing (i.e., free

response) data with constant discriminations. Figure 4 con-

tains information curves from such a free response analysis

of Non-guessing data(S) and from the three analyses of the

Guessing data. Recall that except for the simulated random

guessing, the two sets of data were generated using

11
See Lord (1968, p. 1014) for a description of the

estimation procedure used for the guessing parameter in the
3-parameter item-guessing model.
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the same model parameters and identical sequence of random

numbers. Consequently we may use this curve as an approxi-

e nation to the best one might be able to recover in estimated

information for a test with these true item parameters and

this distribution of abilities. (In fact, while the S

information curve was drawn using the estimated item parameters,

the true information curve, which by virtue of our privileged

knowledge of the true item parameters is also available to

us, is not distinguishable on this scale from the S curve.

We note that since every information curve presented in this

article was drawn using the estimated item parameters each

is in fact an estimated information curve. Of course either

information curve is drawn with level of ability as the

abscissa so that estimates of ability do not enter in to the

determination of these curves.)

Our first comparison is between the A.R.R.G. analysis of

Guessing data and our standard, the free response analysis of

Non-guessing data. The resulting information curves are as

they should be: Guessing has resulted in poorer precision at

lower ability levels, and equal precision elsewhere.

Our next comparisons concern the information curve of

the free response analysis of guessing data. This curve

apparently reports more information concerning subjects in
12

the lower half of the ability range than the A.R.R.G. analysis.

A comparison to the S curve shows that the free response

analysis of guessing data reports as much information con-

12
The F curve is covered by the S curve in this region.
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cerning lower ability subjects as the free response

analysis of truly free response data. Substantively we

know this must be an erroneous conclusion as random guessing

must result in a smaller amount of information for levels of

ability where such behavior occurs. Proceeding along the

ability continuum we observe a significant decrease in the

amount of recovered information by this analysis for

higher level subjects, subjects with little or no opportunity

to reduce information by guessing! The estimated item-

parameters of a free response analysis of guessing data

provide an explanation (Figure 1); guessing lovers the

estimated discriminations of the difficult items, thus

lowering the amount of estimated information in the upper

half of the ability continuum. Regarding the lower half,

guessing doesn't affect estimation of easy items, consequently

the estimated information from the free response analysis

erroneously reports as much information et these levels as

that which would be recovered from truly free response data.

The A.R.R.G. analysis in this range omit:; the component of

information resulting from low-ability-subject, high-

difficulty-item interactions, thus more accurately representing

the amount of information available for estimating these

subject parameters.
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Our final comparisons concern the information curve

of an item-guessing analysis of the simulated guessing

data (I). There is a clear improvement in recovered

information at the lower ability levels by the A.R.R.G.

analysis as contrasted to the item-guessing analysis. The

difference between the two may, perhaps, be a general

result of the item-guessing analysis' complete failure to

take into account individual differences in guessing

tendency. More interesting,perhaps, is that apparently the

item-guessing analysis of simulated guessing data recovers

more information at the upper ability levels than a free

response analysis of identically generated--and therefore

appropriate for this comparison--free response data. The

item-guessing analysis seems to indicate that the intro-

duction of guessing into the data at the lower half of

the ability continuum results in an increase in the infor-

mation at the upper half. Mathematically the reason for

this paradox is clear, the item-guessing analysis over-

estimated the item parameters in the upper portion of ability

continuum (see Figure 5). Psychometrically, however, it is

difficult to rationalize at any ability level an increase in

information as a result of random guessing.

In this figure we've used the simulated guessing data

generated by the A.R.R.G. model. When comparing the information

structure from the three analyses of data in situ we observe

the same general pattern in information curves that we've
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outlined here with simulated data. Of course we don't have

an appropriate set of free response data to make comparisons

of information curves, but we are able to obtain curves such

as Figure 6: Information curves of three analyses, free

response, A.R.R.G., and item-guessing, of multiple choice

data, data we assume contains random guessing.

Figures 7, 8, and 9 contain the information curves

from the different analyses of the three tests described

above. A comparison of these figures to Figure 6, reflecting

an analysis of data known to be generated by the A.R.R.G.

model, immediately indicates the similarity of the structure

of all four figures. Each figure is characterised below the

mean ability by the ordering: free response, A.R.R.G., item-

guessing. At some point below the mean ability the information

reported by the free response begins to decline and falls below

the other two curves for higher abilities. At approximately

the mean ability the three parameter item-guessing analysis

begins to report more information than the A.R.R.G. As argued

above this is a result of an overestimation of the information

resulting from overestimation of the true item parameters by

the item-guessing analysis. We feel that these similarities

between analyses of data known to be generated by the A.R.R.G.

model,and the parallel figures based on analyses of real

multiple choice data sets, lend further support for use of the

A.R.R.G. model in analyses of data contaminated by guessing.
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We may also compare the different analyses in terms

of average information. if the underlying ability, 6, is

distributed normally with mean zero and variance one in the

population and the estimate of 0 is scaled accordingly, the'

average information is

as

Jri(e) = 1/1/Y7 1(e) exp (-0
2
/2) de

which is readily evaluated by Gauss-Hermite quadrature.

For these three tests the average information for each

analysis is given in Table 4

Test

Table 4

Average Information

Free Response A.R.R.G. Item-guessing

MAT Word Knowledge 22.68 25.84 24.51

Reading 6.32 7.84 6.63

Mathematics 7.33 9.62 8.47

We see that for each test the A.R.R.G. analysis provides the

greatest average information for ability estimation.
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